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Abstract  

Topography exerts a major control on land surface processes through its influence on atmospheric forcing, soil and vegetation 

properties, river network topology and drainage area. Land surface models with spatial structure that captures the spatial 

heterogeneity influenced by topography may improve representation of land surface processes. Previous studies found that land 10 
surface modeling using subbasins instead of structured grids as computational units improves scalability of simulated runoff and 

streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid 

structures based on topographic properties including surface elevation, slope and aspect. Two methods (Local and Global) of 

watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the 

topographically diverse Columbia River basin in the Northwestern United States. In the Global method, a fixed elevation 15 
classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize 

each subbasin using different elevation ranges that also naturally accounts for slope variations. The relative merits of the two 

methods and subgrid structures are investigated for their capability to capture topographic heterogeneity and their implications 

on representations of atmospheric forcing and land cover spatial patterns. Results highlight the relative advantages of the Local 

method over the Global method. Comparison between the two types of subgrid structures showed that the non-geo-located 20 
subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Overall the 

Local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic, and vegetation 

variability important for land surface modeling.  
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1 Introduction 

Topography exerts a major control on land surface processes through its influence on atmospheric forcing, soil and vegetation 

properties, and river network topology and drainage area. Consequently, accurate climate and land surface simulations in 

mountainous regions cannot be achieved without considering the effects of topographic heterogeneity (Leung and Ghan, 1998; 

1995; Ghan et al. 2006).  Mountain water resources are particularly sensitive to global warming (e.g., Leung and Ghan 1999; 30 
Ghan and Shippert 2006; Mote et al. 2007; Kapnick and Hall 2012). The amplified warming at high elevation due to the lapse-

rate effect and snow albedo feedback has large impacts on snowpack accumulation and melt, with consequential effects on 

runoff and water supply (Leung et al. 2004; McCabe and Clark 2005; Rasmussen et al. 2011).  

Topography has dominant control on the spatial pattern of atmospheric forcing including surface temperature, precipitation, 

incoming and reflected solar radiation. Regions characterized by heterogeneous topography generally exhibit diverse 35 
hydroclimatic conditions. For example, stable moisture-rich air lifted by the mountains can produce orographic precipitation that 

dominates the spatial distribution of cold season precipitation in the western United States (Leung et al. 2003). In mid and high 

latitude regions topography also influences the partitioning of precipitation into snow and rainfall. In addition, incoming and 

reflected solar radiation is highly dependent on the orientation of landscapes, which can also have significant impacts on surface 

hydrology through the effects of radiation on cloud, precipitation, and snow processes (Lee et al. 2015).   40 
Topography is also one of the factors of soil formation, exerting dominant control on the spatial patterns of soil properties over 

watersheds, e.g., soil depth (Tesfa et al., 2009 and references there in). Soils are generally deeper and finer in texture over valleys 

compared to the shallower and coarser texture over ridges of watersheds. Through its influence on direct and diffuse solar 

radiation and consequent effects on soil moisture and evapotranspiration, topography affects spatial pattern of vegetation on a 

landscape. Different vegetation types grow on different parts of a landscape depending on their water demand and resistance to 45 
water stress. In semiarid regions, vegetation types that have high water demand or less resistant to moisture stress grow near 

streams, while vegetation types resistant to moisture stress can grow further from streams (Tesfa et al., 2011). Topography also 

determines topology of river network and drainage area, which in turn control surface and subsurface flows (Beven, 1997; Chen 

and Kumar, 2001). Overall, catchment ecohydrology is strongly influenced by the topography-mediated interactions among 

vegetation, soil, and river network (Thompson et al. 2011). 50 
Improving representations of land-atmosphere and surface-subsurface interactions influenced by fine scale topography and 

vegetation has been identified as a grand challenge, motivating the need for hyper-resolution land surface modeling (Wood et al., 

2011). While hyper-resolution modeling approaches are being tested at regional (Singh et al. 2015) and continental scales 

(Maxwell et al. 2015), improving the spatial structures of land surface models to capture the effects of topographic heterogeneity 

could be crucial to advancing modeling of land-atmosphere interactions in earth system models. Tesfa et al. (2014a; 2014b) 55 
demonstrated improved scalability of simulated runoff and streamflow processes when subbasins instead of structured grids are 

used as computational units in the Community Land Model. The improvements of the subbasin-based land surface modeling in 

scalability come from its important conceptual advantages in capturing atmospheric forcing and runoff generation processes, 

both strongly influenced by topography that defines the boundaries of the subbasins.  

Discretization of the subbasins to capture spatial heterogeneity influenced by topography may further improve the representation 60 
of land surface processes. Ke et al. (2013) evaluated several classification methods to account for subgrid variability of surface 

elevation and vegetation cover for land surface models with structured grids. To the best of our knowledge, development of 

subgrid structures for the subbasin-based land surface modeling has not been attempted. The purpose of this paper is to explore 

subgrid structures that capture topographic heterogeneity and its influences on land surface processes for land surface modeling. 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-152, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 1 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 
 

Such subgrid spatial structures are expected to provide a more realistic spatial distribution of surface properties and their 65 
influence on climatic variability with more reasonable computational requirement compared to discretizing the domain into fine 

resolution grid-based representations reported in the literature (e.g., Singh et al., 2015). 

Motivated by the significant influences of topographic heterogeneity on land surface processes, we explore new topography-

based spatial structures by further dividing subbasins into subgrid structures or subgrid units (also hereafter denoted as SU) to 

take advantage of the emergent patterns and scaling properties of atmospheric, hydrologic, and vegetation processes in land 70 
surface models. For this purpose, two methods (Global and Local) of subbasin discretization are applied to derive two types of 

SUs (geo-located and non-geo-located) over the topographically diverse regions of the Northwestern United States. In the Global 

method, the subbasins are discretized into multiple SUs following the surface elevation classification scheme employed in Leung 

and Ghan (1998; 1995), combined with classifications of topographic slope and aspect. The local method utilizes concepts of 

hypsometric analysis (Willgoose and Hancock, 1998; Sinha-Roy, 2002) combined with classification of topographic aspect to 75 
discretize each subbasin into multiple SUs. We evaluate the two discretization methods and spatial structures for their capability 

to capture topographic heterogeneity and their implications on the representation of the spatial patterns of atmospheric forcing 

and land cover.  

The remainder of the paper is organized as follows: Section 2 describes the study area. Development of the new subgrid 

structures is discussed in Section 3. The strategy used to evaluate the methods of subbasin discretization and the subgrid 80 
structures are discussed in Section 4. Section 5 presents the results and discussion and finally Section 6 closes with conclusions 

and recommendations.  

2 Study Area 

To investigate the importance of various watershed discretization methods, the Columbia River basin located in the U.S. Pacific 

Northwest is used as a case study. Figure 1 shows the topographic patterns, subbasins with average size equivalent to 1/8th 85 
degree grid, elevation ranges of the subbasins, and two subbasins representing extreme topographic properties. The Columbia 

River basin encompasses both mountainous and low-lying regions. Climatically, the mountainous regions are characterized by 

low temperature and higher precipitation dominated by snowfall, while, the low-lying regions have warmer temperature and 

lower precipitation mainly in the form of rainfall. The basin encompasses the largest river in the Pacific Northwest region of 

North America, and is the fourth largest river in the United States by discharge volume. Water resources in the basin are 90 
dominantly controlled by the high precipitation and snow cover in the mountainous areas. 

3 Development of new SUs for land surface modeling  

Two methods of subbasin discretization are implemented to develop land surface subgrid structures that capture the spatial 

heterogeneity influenced by topography. Both methods are applied to derive two types of subgrid units (SUs): geo-located and 

non-geo-located. The following subsections describe the input data, the two discretization methods and the two types of SUs. 95 

3.1 Input data 

To derive the subgrid units, the study domain is first delineated into subbasins. We utilize the subbasins equivalent to 1/8th 

degree grids delineated in Tesfa et al. (2014a; 2014b) using ArcSWAT (Soil and Water Assessment Tool; Neitsch et al., 2005) 

with the 90m Digital Elevation Model (DEM) and the 15-arcsec river networks from the Hydrological data and maps based on 

Shuttle Elevation Derivatives (HydroSHEDS) (Lehner et al., 2008). Although DEMs at resolutions of 30m or finer are available 100 
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from the United States Geological Survey (USGS), we use DEM from a global database (i.e., HydroSHEDS) because the main 

goal of this study is to develop subgrid structures for global land surface models and Earth system models. Along with the 

delineation of the subbasins, topographic attributes such as slope and aspect are derived for the study domain to be used as inputs 

for the subbasin discretization methods.  

3.2 Global Method 105 

In the Global method, the study domain is first discretized into 12 elevation classes based on surface elevation extracted from the 

90m HydroSHEDS’ DEM, following the surface elevation classification scheme employed in Leung and Ghan (1998; 1995) that 

uses class intervals of 100m for surface elevation below 500m, and gradually increasing to intervals of 500m and 1000m for high 

surface elevations, resulting in 12 elevation classes (see Figure 2). This method is Global because the same elevation 

classification scheme is used to discretize all subbasins regardless of the elevation spanned by individual subbasins, which can 110 
vary substantially. Since topography influences atmospheric and land surface processes through surface elevation, slope and 

aspect, the Global method combines topographic slope and aspect with the elevation classes. For this purpose, the study domain 

is also partitioned into two classes of topographic slope where slope values less than or equal to 20 degrees are grouped as gentle 

to moderately steep areas, and slope values greater than 20 degrees are grouped as steep to very steep areas following definitions 

of slope classes by the Natural Resources Conservation Service of the United States Department of Agriculture. Similarly, the 115 
study domain is partitioned into two classes of topographic aspect, where areas facing north, northwest, northeast and east are 

assigned to one class and areas facing south, southwest, west and southeast belong to a separate class. For each subbasin, classes 

of elevation, slope and aspect are extracted following the subbasin boundary and converted from raster to polygon shapes, 

resulting in three sets of SUs, respectively, derived based on elevation, slope and aspect separately. The SUs derived from 

elevation, slope and aspect are then intersected to generate SUs based on the combination of topographic elevation, slope and 120 
aspect, resulting in a large number of SUs for each subbasin. Since many of the SUs are extremely small in size, and our goal is 

to capture topographic heterogeneity with only a reasonable number of SUs for computational efficiency, an area threshold value 

is used to merge SUs with area smaller than the threshold to their neighboring SUs with size larger than or equal to the threshold 

value. The Global method has been implemented in Python and utilizes ArcGIS functionalities. In this effort, the Global method 

is applied to derive both geo-located and non-geo-located SUs.  125 

3.3 Local Method  

In the Local method of subbasin discretization, the subbasins for the study domain are first classified into five groups based on 

values of elevation range using the Natural Breaks (Jenks) classification method in ArcGIS. As an example, to derive the 

hypsometric curves, the two contrasting subbasins shown in Figure 1 are discretized into 100 elevation contours using elevation 

data extracted from the 90m resolution DEM from HydroSHEDS.  The relative elevation (RH) and relative area (RA) are 130 
calculated for each contour, where, relative elevation (RH) is defined as the ratio of the height of the given contour (h) from the 

base plane of the subbasin to the maximum height of the subbasin (H), while relative area (RA) refers to the ratio of the area 

above a particular contour (a) to the total area of the subbasin (A).  

𝑅𝑅𝑅𝑅 = 𝑎𝑎
𝐴𝐴
         (1) 

𝑅𝑅𝑅𝑅 = ℎ
𝐻𝐻

              (2) 135 
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The hypsometric curves are derived by plotting the relative area (RA) along the abscissa and the relative elevation (RH) on the 

ordinate axes. In geomorphology, hypsometric curve is used to characterize the distribution of elevation within a basin. 

Following Willgoose and Hancock (1998), three parts of the hypsometric curve are identified as the head, body and toe of the 

subbasin, respectively, and defined as: (1) the upward-concave part of the curve in the upper left-hand side; (2) the downward-

concave part of the curve on the right hand side; and, (3) the upward-concave region in the center of the curve between the head 140 
and toe. As shown in Figure 3, relative area values of 0.2 and 0.8 are used to discretize the hypsometric curve into the three parts, 

following Sinha-Roy (2002). Furthermore, the body part of the subbasins is divided at relative area value of 0.5 for more 

homogenous topography within each class. As a result, each subbasin is discretized into four elevation bands with elevation class 

break values at the minimum and maximum elevation, and at relative areas of 0.2, 0.5 and 0.8. Elevation ranges are calculated 

between each consecutive class break values. The values of elevation ranges and class break are further used in the algorithms in 145 
Tables 1 and 2 to derive the elevation-based SUs for each subbasin. This method is Local as the elevation ranges used to 

discretize the subbasins vary depending on the topographic variations within each subbasin. 

Similar to the Global method, classes of topographic aspect are extracted for each subbasin and intersected with the 

corresponding elevation classes classifying the subbasin into multiple SUs, where some of them are extremely small in size. 

Since discretizing the subbasins using hypsometric curve is expected to capture slope variation implicitly, topographic slope is 150 
not used in the Local method. With the main goal to capture topographic heterogeneity with only a reasonable number of SUs for 

computational efficiency, area threshold is utilized to merge those SUs with area smaller than the threshold to their neighboring 

SUs with size larger than or equal to the threshold to develop the final SUs. This method has also been implemented in Python 

and utilizes ArcGIS functionalities. This method is also applied to derive both geo-located and non-geo-located SUs. The actual 

number of SUs of each subbasin depends on the variability of surface elevation and topographic aspect within the subbasin 155 
boundary.  

3.4 Types of Subgrid Units  

Two types of SUs are derived using both the Global and Local methods: geo-located and non-geo-located. The geo-located SUs 

are derived by discretizing the subbasins into spatially contiguous structures. They are characterized with explicit geographical 

location and a single boundary. In this case, SUs with the same topographic characteristics at different locations of the subbasin 160 
are treated as separate units. The non geo-located SUs are developed by discretizing the subbasins into spatially non-contiguous 

structures. In this case, SUs with the same topographic properties at different locations of the subbasin are treated as a single unit 

resulting generally in reduced number of SUs compared to the geo-located SUs.  

4 Evaluation Strategy  

4.1 Analysis using SUs based only on elevation 165 

Because topographic slope is not explicitly used in the Local method, it is logical to ask whether discretizing subbasins using the 

hypsometric curve is capable of implicitly capturing the variability of topographic slope within the subbasins. To investigate this, 

geo-located SUs are derived using both Global and Local methods based on elevation classification only. The number of SUs for 

each subbasin from both methods is compared against the average values of topographic slope of the subbasins in the study area 

to determine how topographic slope influences the number of SUs needed to capture subgrid topographic variability in each 170 
method. In addition, the spatial pattern of the number of SUs for each subbasin derived using each method is compared against 

the spatial pattern of topographic slope and elevation range within the subbasins for the study region. An effective subgrid 
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method would allow more SUs in subbasins with complex terrain to capture the subgrid topographic variability and use fewer 

SUs in subbasins with small variations of topography. Finally, the relative capability of the two methods in capturing 

topographic heterogeneity and their sensitivity to the values of area threshold are evaluated, respectively, based on the standard 175 
deviation of the 90m resolution elevation within the SUs and the variation of statistical metrics (the total number of SUs, mean 

SU size and standard deviation in SU size) calculated for the study domain across different values of area threshold (1%, 2%, 

3%, 4%, & 5%). Methods that are less sensitive to the values of area threshold can provide more robust SUs for representing 

subgrid topographic heterogeneity.   

4.2  Analysis using SUs based on elevation, slope, and aspect  180 

The two types of SUs are expected to differ in their ability to capture topographic heterogeneity, the number of SUs, which has 

important implications to the overall computational burden, and their sensitivity to area threshold values, which is important for 

defining robust SUs for land surface modeling. Thus, to evaluate the two types of SUs with respect to their applications in land 

surface modeling, geo-located and non-geo-located SUs for the study area are derived based on elevation, slope and aspect using 

both Global and Local discretization methods at different values of area threshold (1%, 2%, 3%, 4%, & 5%). The geo-located 185 
and non-geo-located SUs of each method are then compared for their sensitivity across values of area threshold using statistical 

metrics (total number of SUs, average size of SUs and standard deviation in SU size) calculated over the study domain at 

different values of area threshold.   

The Global and Local methods are further investigated for their capability in capturing topographic heterogeneity and 

consistency across different values of area threshold when using the non-geo-located SUs. The relative capability of the non-geo-190 
located SUs from both methods in capturing topographic heterogeneity is evaluated based on the values of standard deviation in 

surface elevation calculated at each SU across different values of area threshold. In addition, sensitivity of the two methods 

(Global and Local) when used to derive non-geo-located SUs is evaluated using statistical metrics calculated over the study 

domain such as total number of SUs, average size of SUs and standard deviation in SU size.  

4.3 Implications to representation of land surface processes 195 

Since the main goal of this study is to derive land surface structures capable of improving representation of land surface 

processes in land surface modeling, it is logical to ask how the new structures impact the representation of land surface 

parameters. For this purpose, the two methods are first evaluated for their relative capability to capture climatic and land cover 

variability over the study area using the non-geo-located SUs derived at different values of area threshold. The capability to 

capture climatic variation is investigated by comparing values of standard deviation in precipitation and surface temperature 200 
within the SUs derived using the two methods. In this case, the precipitation and surface temperature datasets for the study area 

are extracted from the 30 year normal annual precipitation and mean annual surface temperature obtained from the PRISM 

climate datasets (800m spatial resolution) (http://www.prism.oregonstate.edu/). Similarly, using the Normalized Difference 

Vegetation Index (NDVI) data as a proxy for land cover, the relative capability of the two methods in capturing land cover 

pattern over the study domain is investigated by comparing values of standard deviation in NDVI calculated within the SUs from 205 
the two methods. For this purpose, the NDVI datasets for the study area are obtained from the enhanced Moderate Resolution 

Imaging Spectroradiometer (eMODIS) data (250m spatial resolution) portal (http://earthexplorer.usgs.gov/) at the Earth 

Observation and Modeling Facility (EOMF). Furthermore, the relative advantages of the non-geo-located SUs derived using the 

Local method in capturing climatic variability in the study domain are investigated by comparing precipitation and surface 
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temperature represented using the SUs against those of subbasin-based and original high resolution PRISM grid-based 210 
representations.   

5 Results and discussion 

5.1 Global versus Local methods using elevation-based SUs 

Since the main differences between Global and Local methods are in the way subbasins are discretized into elevation classes and 

whether topographic slope is included explicitly, the relative capability of the two methods in capturing topographic 215 
heterogeneity is investigated using elevation-based SUs. Figure 4 compares how well the Global and Local subbasin 

discretization methods capture the topographic slope using elevation-based geo-located SUs derived based on elevation at 1% 

area threshold. For this purpose, the numbers of SUs per subbasin resulted from both methods are compared against the average 

topographic slope calculated over the subbasins. The results show the number of SUs per subbasin from the Local method is 

directly related to the average subbasin slope (r2 = 0.47), so the steep subbasins are generally discretized into more SUs than the 220 
flat subbasins. On the other hand, the number of SUs per subbasin from the Global method is not related (r2 = 0.07) to the 

average topographic slope of the subbasins. From this comparison, it is clear that discretizing subbasins following the algorithms 

in Tables 1 and 2 using the hypsometric curve characterization within subbasins is able to capture topographic slope implicitly, 

making the Local method superior over the Global method.  

The Columbia River basin encompasses diverse topography ranging from flat to steep mountainous areas making it an ideal 225 
study area for evaluating the relative capability of the two subbasin discretization methods in capturing the spatial pattern of 

topographic properties. The spatial pattern of the numbers of elevation-based geo-located SUs per subbasin derived using both 

methods with a 3% area threshold are compared against the spatial pattern of the average topographic slope and elevation ranges 

of the subbasins classified based on the Natural Breaks (Jenks) classification method in ArcGIS (Figure 5). The results suggest 

that the spatial pattern of the number of SUs per subbasin for the SUs from the Local method follows the topographic pattern in 230 
the study area better than those of the Global method, confirming further the advantages of discretizing the subbasins using the 

Local method. The number of SUs per subbasin from the Local method mimics the topographic pattern so more SUs are defined 

per subbasin over the mountainous areas and fewer SUs are needed per subbasin over the flat areas of the basin. This enables the 

model to capture the topographic heterogeneity with minimum number of SUs over the study domain, which is essential for 

computational efficiency in land surface modeling. 235 
Figure 6 shows the relative capability of the two methods in capturing subgrid topographic heterogeneity across different values 

of area threshold using elevation-based geo-located SUs. For this purpose, values of standard deviation in elevation within the 

geo-located SUs derived using different values of area threshold (1%, 2%, 3%, 4%, & 5%) from both methods are compared. 

The results again clearly show that the SUs from the Local method are able to capture topographic heterogeneity, which is 

reflected in the smaller standard deviation of topography within each SU across different values of area threshold, better than 240 
those of the Global method. In addition, the results also show that the Local method can capture topographic heterogeneity more 

consistently across different values of area threshold than the Global method, suggesting that the SUs derived using the Local 

method are more robust.  

Using the same SUs, the two methods are further investigated for their sensitivity to values of area threshold using the variability 

of statistical metrics (total number of SUs, mean SU size and standard deviation in SU size) calculated over the whole study 245 
domain for different values of area threshold. The results in Figure 7 show that SUs derived using Local method remain more 
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consistent across different values of area threshold than those of the Global method, making the Local method more robust than 

the Global method for land surface modeling.  

5.2 Geo-located versus non geo-located SUs 

To evaluate the robustness of the two types of SUs (geo-located and non-geo-located) for land surface modeling, we compare 250 
their sensitivity to values of area threshold. For this purpose, geo-located and non-geo-located SUs are derived based on 

elevation, slope and aspect using both methods at different values of area threshold. The geo-located SUs from each method are 

then compared against the corresponding non-geo-located SUs derived using the same method based on the statistical metrics 

calculated over the whole study area. Shown in Figure 8 are comparisons of the variability of the total number of SUs, average 

SU size and standard deviation in SU size calculated for the geo-located SUs against those of the non-geo-located SUs for both 255 
the Global (Figures 8a, 8b, and 8c) and the Local (Figures 8d, 8e, and 8f) methods. In both methods, the results generally suggest 

that the non-geo-located SUs are more consistent across different values of area threshold than the corresponding geo-located 

SUs. Thus, in subsequent sections, the two methods of subbasin discretization are evaluated using the non-geo-located SUs only.  

5.3 Global versus Local methods using non geo-located SUs 

Following the evaluation of the two methods using elevation-based geo-located SUs, it is important to investigate whether the 260 
advantages of the Local method over the Global method shown in previous results still apply when the two methods are used to 

derive non-geo-located SUs based on the combination of multiple topographic properties. Shown in Figure 9 are comparisons of 

sensitivity of the Global and Local methods to values of area threshold when the two methods are applied to derive non-geo-

located SUs using the variability of the statistical metrics (total number of SUs, average SU size and standard deviation in SU 

sizes) calculated over the whole study domain at different values of area threshold.  Note that unlike the comparison in Figure 7, 265 
the SUs in this comparison are non-geo-located, derived based on a combined classification of elevation and topographic slope 

and aspect in the Global method and elevation and topographic aspect in the Local method. Similar to the comparisons in Figure 

7, the results suggest that the SUs from the Local method are less sensitive to the values of area threshold, yielding more 

consistent values of the total number of SUs, average SU size and standard deviation in SU sizes over the study domain than 

those of the Global method.  270 
Shown in Figure 10 are values of standard deviation in elevation within the non-geo-located SUs derived using the Global and 

Local methods at different values of area threshold, comparing the capability of the two methods in capturing topographic 

heterogeneity when used for non-geo-located SUs. Similar to the results shown in Figure 6, there is a clear difference in the 

capability of the two methods in capturing topographic heterogeneity across different values of area threshold. The non-geo-

located SUs from the Local method are able to capture topographic heterogeneity much better than those of the Global method 275 
across different values of area threshold. The improved capability of the Local method shown in this comparison comes from the 

advantage of performing elevation discretization based on hypsometric curve characterization in the Local method (see Figures 6 

and 3). The results also suggest that the capability of the non-geo-located SUs from the Local method in capturing topographic 

heterogeneity remains more consistent at different values of area threshold than those of the Global method, confirming the 

superior advantages of the Local method. 280 
From the results shown so far, relative to the Global method, the SUs from the Local method are superior in capturing 

topographic heterogeneity yielding more SUs per subbasin over mountainous areas and fewer SUs per subbasin over flat areas, 

which is essential for more realistic representations of the spatial distributions of precipitation and snow cover in mountainous 

areas and computational efficiency in land surface modeling. Also, the SUs from the Local method are more consistent across 
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different values of area threshold than those of the Global method. Subsequently, it is important to examine whether similar 285 
advantages exist for the Local method in capturing climatic and land cover variability as compared to the Global method. The 

following section focuses on the implications of the non-geo-located SUs in the representations of climatological and land cover 

variability in the study area.  

5.4 Implications to the representation of land surface processes 

Topography can influence land surface processes through its impacts on atmospheric forcing and vegetation variability. 290 
Consequently, it is essential to examine the implications of the new SUs on representations of climatic and vegetation variability. 

Shown in Figure 11 are values of standard deviation calculated for the 30 year normal annual precipitation (Figure 11a) and 

mean annual surface temperature (Figure 11b) obtained from the PRISM dataset within the non-geo-located SUs derived using 

the Global and Local methods at different values of area threshold, comparing the relative capability of the two methods in 

capturing climatic variability in the study area. The results show generally lower values of standard deviation in both 295 
precipitation and temperature for the SUs derived using the Local method than those of Global method across all values of area 

threshold. Consistent with the comparison on the capability to capture topographic heterogeneity shown in Figures 6 and 10, 

these differences reflect the dominant control of topography and the impact of spatial structure on precipitation and surface 

temperature, suggesting improved capability in capturing climatic variability for the Local method.  

Furthermore, shown in Figure 12 are values of standard deviation of NDVI calculated at the non-geo-located SUs from both 300 
Global and Local methods at different values of area threshold. In this comparison, the NDVI is used as a proxy for land cover 

information during spring (Figure 12a) and summer (Figure 12b) extracted from the eMODIS dataset, showing the relative 

capability of the two methods in capturing land cover variability in the study area. The results generally show lower values of 

standard deviation for the SUs derived using the Local method than those of the Global method across all values of area 

threshold, suggesting that the SUs from the Local method have better capability of capturing land cover variation in the study 305 
domain, which is essential to representation of land cover in land surface modeling.   

In all the results shown so far, the SUs from the Local method have demonstrated clear advantages in capturing topographic 

heterogeneity and climatic and land cover variation compared to those of the Global method over the study domain. Therefore, 

we further examined how representation of climatological forcing improves when using the non-geo-located SUs derived using 

the Local method at 3% area threshold value compared to the subbasin-based representation. Figure 13 compares the spatial 310 
pattern of the 30 year normal precipitation when represented based on subbasins at roughly 1/8th degree resolution (Figure 13a), 

non-geo-located SUs within the subbasins (Figure 13b) and the original grid representation from the PRISM dataset at 800 m 

resolution (Figure 13c). Note that the Canadian part of the study domain is missing from the map because the PRISM data are 

only available for the United States. The results show that the SU-based representation yields similar spatial pattern of 

precipitation to that of the original PRISM grids with no visually discernible difference. The spatial pattern of precipitation for 315 
the subbasin-based representation has noticeable differences from those of the SUs and original PRISM grid representations. 

With the ability to better capture the spatial heterogeneity of precipitation, land surface models that use the SU-based 

representation are expected to produce more realistic distribution of snow cover over the mountains compared to the subbasin-

based representation, and it is considerably more efficient computationally compared to modeling land surface processes using 

hyper-resolution such as the PRISM grids. Further comparison of the three representations of precipitation using statistical 320 
metrics (average and standard deviation values) reveals that the values from the SU-based representation are much closer to 

those of the original PRISM grids as compared to the subbasin-based representation (Table 3).  
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Similar comparisons are shown in Figure 14 for surface temperature. Similar to the results for precipitation, there is no visually 

noticeable difference in the spatial pattern of temperature between the SU-based and original PRISM grid-based representations, 

while the subbasin-based representation misses important variability indicated in the PRISM data. Comparison using statistical 325 
metrics of temperature (Table 3) confirms the advantages of the new SUs representation.  

The advantages demonstrated for the SUs derived using the Local method in representing topographic features are expected to be 

significant for land surface modeling in mountainous areas such as the Columbia River Basin, where topography has dominant 

control on precipitation and temperature characteristics that translate to differences in runoff and streamflow characteristics 

(Tesfa et al., 2014a; Tesfa et al., 2014b).  330 

6 Summary and Conclusions 

Topography exerts a major control on land surface processes through its influence on atmospheric forcing, soil and vegetation 

properties, network topology and drainage area. Thus, spatial structure of land surface models that captures spatial heterogeneity 

influenced by topography may improve modeling of terrestrial water cycle and land-atmosphere interactions. In land surface 

modeling, such spatial structures are very much needed for accurate simulations of land surface processes in Earth system 335 
models. In this study, we developed new land surface spatial structures by further discretizing subbasins into subgrid units (SUs) 

based on their topographic attributes (e.g. elevation, topographic slope and aspect). Two methods of watershed discretization 

(Local and Global) have been developed and applied over the Columbia River basin in Northwestern United States to derive two 

types of topography-based subgrid structures (geo-located and non-geo-located). In addition, the two methods have been 

evaluated for their consistency, capability to capture topographic heterogeneity and climatic and land cover variability of the 340 
study domain using both types of subgrid structures.  

In the Global method, the study domain is initially discretized into 12 elevation classes following the surface elevation 

classification scheme employed in Leung and Ghan (1998; 1995). Then, following the subbasin boundary, the elevation classes 

are intersected with classes of topographic slope and aspect, discretizing each subbasin into multiple subgrid units. The local 

method utilizes concepts of hypsometric analysis to first discretize each subbasin into elevation classes using algorithms 345 
developed in this study, which are then merged with classes of topographic aspect to divide the subbasin into multiple subgrid 

units. In both methods, values of area threshold are used to merge small subgrid units into the neighboring large subgrid units, 

yielding reasonable number of subgrid units per subbasin. Both methods are applied to derive two types of subgrid structures: 

geo-located (spatially contiguous) and non-geo-located (spatially non-contiguous). Furthermore, using both types of SUs, the 

two methods of subbasin discretization are investigated for their capability to capture topographic heterogeneity, their 350 
implications on representations of climatic and vegetation variability in the study area, as well as their sensitivity to the area 

threshold values. 

Using elevation-based geo-located subgrid untis, comparison of the two methods showed that the Local method is able to capture 

the topographic variability better than the Global method. Taking advantage of hypsometric analysis, the Local method can 

capture slope variability implicitly so it generally requires fewer SUs to represent subgrid topographic variability. The Local 355 
method more effectively captures the topographic pattern across the region by discretizing steep subbasins into more subgrid 

units and flat subbains into fewer subgrid units. Using the Local method, the standard deviation of surface elevation within the 

subgrid units is noticeably smaller and less sensitive to the values of area threshold than the Global method. Hence the Local 

method is clearly more effective and robust for representing subgrid elevation variability for land surface modeling.  
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Comparing the two types of subgrid structures derived using the Global and Local methods revealed that the non-geo-located 360 
SUs are more consistent than the geo-located SUs across different area threshold values. Further investigation of the relative 

capability of the two methods with non-geo-located subgrid units representing multiple topographic features (elevation, slope, 

and aspect) based on the standard deviation in surface elevation within the subgrid units and statistical metrics calculated over 

the whole study domain further demonstrated superior capability and consistency for the Local method compared to the Global 

method. Similarly, investigation of the relative capability of the two methods in capturing climatic and land cover variability 365 
based on the high resolution PRISM precipitation and surface temperature and NDVI data, respectively, reveals that the Local 

method is generally better than the Global method. Finally, comparing the precipitation and surface temperature over the study 

area when represented using non-geo-located SUs from the Local method against those of the subbasin-based and original 

PRISM grid-based showed the spatial pattern and statistical values of the subgrid units are much closer to those of the original 

PRISM grids than those of the subbasins.  370 
In summary, this study demonstrated that adopting the hypsometric curve characterization for discretizing subbasins yields 

improved capability in capturing topographic heterogeneity and consistency across different values of area threshold. This 

resulted in improved representation of climatic and land cover variability in land surface modeling. The improved capability to 

capture subgrid variability of atmospheric forcing, surface topography, and vegetation cover with nominal increase in 

computational requirement is essential for improving simulations of land surface modeling in mountainous regions. The focus in 375 
this paper is the development and evaluation of the methods and new spatial structures. Future efforts will implement the non-

geo-located SUs from the Local method in a land surface model based on the Community Land Model subgrid structure to 

investigate if or how the addition of topographic subgrid units to the subgrid hierarchical structure translates to improved 

simulations of evapotranspiration, soil moisture, snowpack, and runoff and streamflow.  
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7 Code Availability 380 

The updated code is available upon request. Please contact Teklu K. Tesfa at teklu.tesfa@pnnl.gov.  
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Table 1: Algorithm applied to derive elevation-based SUs using the Local method.  

Algorithm 1: Local method of subbasin discretization. Array BRKi = [Elvmin, Elv0.2, Elv0.5, Elv0.8, and Elvmax] 
denotes elevation values at the initial class breaks, where Elvmin, Elv0.2, Elv0.5, Elv0.8, and Elvmax refer to the 
minimum elevation, elevation values at relative areas of 0.2, 0.5, and 0.8, and maximum elevation of the subbasin, 
respectively. Array Ri = [R1, R2, R3, R4] denotes the values of elevation range between consecutive BRKi. 
Variables BRKf denotes the final values of elevation at class breaks. Variable thr denotes the value of elevation 
threshold (100 m).  Variable n denotes the number of Rs with values less than thr. Function GetFinalBRKs() 
denotes a function used to determine BRKf by recursively merging Rs less than teh thr with the neighboring Rs 
recursively.  
 
For each Subbasin: 
 Derive a hypsometric curve 
 Determine elevation values at the BRKi 
 Calculate values of Ri between consecutive BRKi 
 Determine n 
  
 If n == 0 // All values of Ri greater than the thr 
  BRKf = BRKi 
  Rf = Ri 
 Else if R1 >= thr and R2 < thr and R3 < thr and R4 >= thr: 
  If (R2 + R3) >= thr: 
   BRKf = [Elvmin, Elv0.2, Elv0.8, Elvmax] // Keep the body as separate class 
  Else: 
   BRKf = [Elvmin, Elv0.5, Elvmax] // Split the body into the head and tail 
 Else if R1 >= thr and R2 < thr and R3 >= thr and R4 >= thr: 
  BRKf = [Elvmin, Elv0.2, Elv0.8, Elvmax]  // Keep the body as separate class 
 Else if R1 >= thr and R2 >= thr and R3 < thr and R4 >= thr: 
  BRKf = [Elvmin, Elv0.2, Elv0.8, Elvmax]  // Keep the body as separate class 
 Else: 
  BRKf = GetFinalBRKs(BRKi, Ri, thr) // Call the recursive function 
 
 Return BRKf 
  
 

  

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-152, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 1 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



19 
 

Table 2: Algorithm to determine the final class break values (BRKf) by merging elevation ranges with less than the threshold to 
the neighboring elevation ranges recursively.  455 

Algorithm 2: To determine the final values of class breaks using recursive function GetFinalBRKs(). BRKi, Ri, 
n, thr, denote the same variables as in Algorithm 1 (Table 1).  Variables i and nn denote an index values of BRKs 
and the number of all Rs, respectively.  
 
Function GetFinalBRKs(BRKi, Ri, thr): 
 Determine n 
 Determine nn // number of all Rs 
 Determine i // index of Rs with less than thr  
 If n > 0 and nn > 1: 
  Get the index (i) 
  If i == 0: // R is at the beginning of the array 
   Ri[i + 1] = Ri[i + 1] + Ri[i] // merge R with the next neighbor 
   Update BRKi 
   Call GetFinalBRKs(BRKi, Ri, thr) // This is a recursive call 
  Else if i == nn: // R is at the end of the array 
   Ri[i - 1] = Ri[i - 1] + Ri[i] //merge R with the previous neighbor 
   Update BRKi 
   Call GetFinalBRKs(BRKi, Ri, thr) //Recursive call 
  Else: // merge with the smaller negibor 
   If Ri[i - 1] > Ri[i + 1] 
    Ri[i + 1] = Ri[i + 1] + Ri[i] // merge R with the next neighbor 
    Update BRKi 
    Call GetFinalBRKs(BRKi, Ri, thr) // This is a recursive call 
   Else: 
    Ri[i - 1] = Ri[i - 1] + Ri[i] // merge R with the previous neighbor 
    Update BRKi 
    Call GetFinalBRKs(BRKi, Ri, thr) // This is a recursive call 
  
 Return BRKi 
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Table 3: Comparing the SU and Subbasin representations against the original PRISM grid representation using statistical 
summary of precipitation and surface temperature calculated over the study domain 

Representation 
Precipitation (mm) Temperature (C°) 

Average Standard 
deviation Average Standard 

deviation 
Subbasin 669.036 459.479 7.179 2.525 
Subgrid Units 739.051 506.828 6.782 2.664 
Original PRISM Grid 717.021 519.523 6.935 2.681 
 

  460 
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Figure 1: The topographic distribution (left) and subbasin delineation (right) of the study area (Columbia River Basin). Two 
subbasins selected to represent the extreme classes of elevation ranges are shown on the far right. 
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 465 

 

Figure 2: The study area classified into elevation bands used in the Global method, following the approach described in Leung 
and Ghan (1995; 1998).  
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Figure 3: Hypsometric curves of two subbasins with extreme contrast of elevation variability discretized into three parts 470 
following Willgoose and Hancock (1998) and Sinha-Roy (2002): the head, body and toe, as used in the Local method.  
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 475 

 

Figure 4: The number of elevation-based geo-located SUs plotted against the average topographic slope for each subbasin 
derived using the Global (a) and Local (b) methods with 1% area threshold.  
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 480 

 

Figure 5: Spatial patterns of the number of elevation-based geo-located SUs per subbasin derived using the Global (c) and Local 
(d) methods compared against the spatial pattern of the topographic slope (a) and elevation ranges of the subbasins in the study 
area. 
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 485 

Figure 6: The standard deviation in elevation within the elevation-based geo-located SUs derived using different values of area 
threshold. On each box, the central mark (notch) is the median (q2), the edges of the boxplot are the 25th (q1) and 75th (q3) 
percentiles, and the whiskers extend to the most extreme data points (q3 + 1.5 x interquartile range (q3 – q1) and q1 – 1.5 x 
interquartile range (q3 – q1); outliers are not considered.  

  490 
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Figure 7: Sensitivity of the Global (grey) and Local (black) methods to different values of area threshold for the total number of 
SUs (a), average SUs size (b) and standard deviation in SU size (c) of the elevation-based geo-located SUs derived using 
different values of area threshold. 495 

 

 

Figure 8: Comparison of the geo-located (black) versus non-geo-located (grey) SUs derived based on elevation, slope and aspect 
using the Global (a, b, and c) and Local (d, e, and f) methods, in terms of their sensitivity to different values of area threshold for 
the total number of SUs, average SU size and standard deviation in SU size over the study domain. 500 
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Figure 9: Comparison of the two methods (Global and Local) using non-geo-located SUs in terms of their sensitivity to different 505 
values of area threshold for the total number of SUs (a), average SU size (b) and standard deviation in SU size (c) over the study 
area. SUs are constructed based on elevation, slope, and aspect. 
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Figure 10: Similar to Figure 6, but for capability of the Global and Local methods to capture topographic heterogeneity based on 
the standard deviation in elevation within the non-geo-located SUs derived based on elevation, slope and aspect using different 
values of area threshold.  515 
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Figure 11: Similar to Figure 5, but for capability of the Global and Local methods to capture climatic variability based on 
standard deviation of the PRISM 30 year normal precipitation (a) and surface temperature (b) within the non-geo-located SUs 
derived based on elevation, slope and aspect across different values of area threshold.  
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Figure 12: Similar to Figure 6, but for capability of the Global and Local methods to capture land cover variation based on 
standard deviation values of eMODIS NDVI during Spring (a) and Summer (b) within the non-geo-located SUs based on 
elevation, slope and aspect across different values of area threshold.  530 
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Figure 13: PRISM 30 year normal precipitation represented using the subbasins (a) and non-geo-located SUs based on elevation, 
slope and aspect from the Local method using 3% area threshold (b) compared to those of the original PRISM grids (c). The 535 
Canadian territory of the study area is not represented in the PRISM dataset.  
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Figure 14: Same as Figure 13, but for temperature.  
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